首 頁 資訊 產業動態 發明·創新 探索·發現 科學麻辣燙 科技人物 專家講壇 新基建 院士知播

首頁>科技>資訊

超越“阿爾法折疊”,人工智能“自己”定制新蛋白質

2022年09月19日 10:04  |  作者:張夢然  |  來源:科技日報
分享到: 

在過去兩年中,機器學習徹底改變了蛋白質結構預測。現在,《科學》雜志上的3篇論文描述了蛋白質設計方面的革命:華盛頓大學醫學院生物學家的研究表明,機器學習可比以前更準確、更快速地創建蛋白質分子。科學家們希望這一進步將帶來更多新的疫苗、療法、碳捕獲工具和可持續生物材料。

論文資深作者、華盛頓大學醫學院生物化學教授、2021年生命科學突破獎獲得者大衛·貝克表示,蛋白質是整個生物學的基礎,但迄今在每種植物、動物和微生物中發現的蛋白質,遠不到所有可能蛋白質的百分之一。有了這些新的軟件工具,研究人員應該能夠找到解決醫學、能源和技術方面長期挑戰的方案。

蛋白質常被稱為“生命基石”,因為它們對于所有生物的結構和功能都是必不可少的。蛋白質中的氨基酸序列決定了它的三維形狀,這種復雜的形狀對于蛋白質的功能至關重要。

為了超越自然界中發現的蛋白質,貝克團隊成員將蛋白質設計的挑戰分解為3個部分,并為每個部分使用新的軟件解決方案。

首先,必須生成新的蛋白質形狀。在《科學》雜志上稍早發表的論文中,該團隊設計AI通過兩種方式生成新的蛋白質形狀:第一種稱為“幻覺”,類似于基于簡單提示就能產生輸出的工具;第二種稱為“修復”,類似于現代搜索欄中的自動完成功能。

其次,為加快這一過程,團隊設計了一種生成氨基酸序列的新算法。15日發表的論文描述了這個名為ProteinMPNN的工具,運行時間約為1秒,比以前最好的軟件快200多倍。它不但結果優于以前的工具,還不需要專家定制即可運行。

第三,該團隊使用“深度思維”公司開發的“阿爾法折疊”來獨立評估他們提出的氨基酸序列是否可能折疊成預期的形狀。

研究人員表示,預測蛋白質結構的軟件是解決方案的一部分,但它本身無法提出任何新的東西。ProteinMPNN之于蛋白質設計,就像“阿爾法折疊”之于蛋白質結構預測。

在另一篇論文中,貝克實驗室的一個團隊證實,新機器學習工具的組合能可靠地生成在實驗室中起作用的新蛋白質。

研究發現,新制造的蛋白質更有可能按預期折疊,因此可使用這一方法創建非常復雜的蛋白質組裝體。“這是蛋白質設計中機器學習的開端。”貝克說。

總編輯圈點:

作為復雜的大分子,蛋白質結構相關研究難度頗高。而人工智能的出場,可以大大提升蛋白質結構相關研究的效率,為生命科學領域的科學家們幫上大忙。幾年前推出的“阿爾法折疊”,可以利用人工智能預測蛋白質的結構,曾一度震動生命科學界。如今,這項最新研究可以利用人工智能設計全新的蛋白質,更進一步彰顯了人工智能在生命科學領域的巨大潛能。

編輯:馬嘉悅

關鍵詞:蛋白質 阿爾法折疊 結構 設計 超越


人民政協報客戶端下載 >

相關新聞

久草日韩精品暖暖的在线视频,精品国产综合色在线,极品少妇粉嫩小泬精品视频,青青热久免费精品视频在线播放
中文字幕免费观看一区二区 | 在线观看国产99 | 亚洲国产欧美精品一区二区 | 色婷婷亚洲一区二区综合 | 日韩中文无线码在线视频观看 | 亚洲理论在线视频 |